Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.075
Filtrar
1.
Metabolism ; 128: 155119, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990711

RESUMO

BACKGROUND: The biological mediators supporting long-term weight loss and changes in dietary choice behaviour after sleeve gastrectomy remain unclear. Guanylin and uroguanylin are gut hormones involved in the regulation of satiety, food preference and adiposity. Thus, we sought to analyze whether the guanylin system is involved in changes in food preference after sleeve gastrectomy in obesity. METHODS: Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were determined in patients with severe obesity (n = 41) as well as in rats with diet-induced obesity (n = 48), monogenic obesity (Zucker fa/fa) (n = 18) or in a food choice paradigm (normal diet vs high-fat diet) (n = 16) submitted to sleeve gastrectomy. Lingual distribution and expression of guanylins (GUCA2A and GUCA2B) and their receptor GUCY2C as well as the fatty acid receptor CD36 were evaluated in the preclinical models. RESULTS: Circulating concentrations of GUCA2A and GUCA2B were increased after sleeve gastrectomy in patients with severe obesity as well as in rats with diet-induced and monogenic (fa/fa) obesity. Interestingly, the lower dietary fat preference observed in obese rats under the food choice paradigm as well as in patients with obesity after sleeve gastrectomy were negatively associated with post-surgical GUCA2B levels. Moreover, sleeve gastrectomy upregulated the low expression of GUCA2A and GUCA2B in taste bud cells of tongues from rats with diet-induced and monogenic (fa/fa) obesity in parallel to a downregulation of the lingual lipid sensor CD36. CONCLUSIONS: The increased circulating and lingual GUCA2B after sleeve gastrectomy suggest an association between the uroguanylin-GUCY2C endocrine axis and food preference through the regulation of gustatory responses.


Assuntos
Preferências Alimentares , Gastrectomia , Peptídeos Natriuréticos/fisiologia , Obesidade Mórbida/cirurgia , Adulto , Animais , Antígenos CD36/análise , Feminino , Hormônios Gastrointestinais/sangue , Hormônios Gastrointestinais/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos Natriuréticos/sangue , Obesidade Mórbida/sangue , Precursores de Proteínas/sangue , Precursores de Proteínas/fisiologia , Ratos , Ratos Wistar , Receptores de Enterotoxina/fisiologia
2.
Life Sci ; 286: 120067, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678261

RESUMO

AIMS: Brain derived neurotrophic factor (BDNF) and the related receptors TrkB and p75NTR are expressed in skeletal muscle, yet their functions remain to be fully understood. Skeletal muscle denervation, which occurs in spinal injury, peripheral neuropathies, and aging, negatively affects muscle mass and function. In this study, we wanted to understand the role of BDNF, TrkB, and p75NTR in denervation-induced adverse effects on skeletal muscle. MAIN METHODS: Mice with unilateral sciatic denervation were used. Protein levels of pro- and mature BDNF, TrkB, p75NTR, activations of their downstream signaling pathways, and inflammation in the control and denervated muscle were measured with Western blot and tissue staining. Treatment with a p75NTR inhibitor and BDNF skeletal muscle specific knockout in mice were used to examine the role of p75NTR and pro-BDNF. KEY FINDINGS: In denervated muscle, pro-BDNF and p75NTR were significantly upregulated, and JNK and NF-kB, two major downstream signaling pathways of p75NTR, were activated, along with muscle atrophy and inflammation. Inhibition of p75NTR using LM11A-31 significantly reduced JNK activation and inflammatory cytokines in the denervated muscle. Moreover, skeletal muscle specific knockout of BDNF reduced pro-BDNF level, JNK activation and inflammation in the denervated muscle. SIGNIFICANCE: These results reveal for the first time that the upregulation of pro-BDNF and activation of p75NTR pathway are involved in denervation-induced inflammation in skeletal muscle. The results suggest that inhibition of pro-BDNF-p75NTR pathway can be a new target to treat skeletal muscle inflammation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Músculo Esquelético/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Feminino , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Denervação Muscular/métodos , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Doenças do Sistema Nervoso Periférico , Precursores de Proteínas/metabolismo , Precursores de Proteínas/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia
3.
Int J Oncol ; 59(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34558643

RESUMO

The present study aimed to explore the role of the long noncoding RNA cytoskeleton regulator (CYTOR) in non­small cell lung cancer (NSCLC) radiosensitivity by manipulating the microRNA (miR)­206/prothymosin α (PTMA) axis. First, 58 pairs of NSCLC and paracancerous tissues, normal human lung epithelial cells and NSCLC cells were collected to analyze CYTOR expression and the relationship between CYTOR and NSCLC prognosis. Subsequently, CYTOR expression in radioresistant cells was assessed. Radioresistant cells with low CYTOR expression and parental cells with high CYTOR expression were established. Functional assays were then performed to assess changes in cell radiosensitivity after irradiation treatment. Subsequently, the downstream mechanism of CYTOR was explored. The binding interactions between CYTOR and miR­206 and between miR­206 and PTMA were predicted and certified. Xenograft transplantation was applied to confirm the role of CYTOR in the radiosensitivity of NSCLC. CYTOR was overexpressed in NSCLC and was associated with poor prognosis. CYTOR was further upregulated in NSCLC cells with radioresistance. CYTOR knockdown enhanced the radiosensitivity of NSCLC cells, while overexpression of CYTOR led to the opposite result. Mechanistically, CYTOR specifically bound to miR­206 and silencing CYTOR promoted miR­206 to enhance the radiosensitivity of NSCLC cells. PTMA is a target of miR­206 and silencing CYTOR inhibited PTMA expression via miR­206, thus promoting radiosensitivity of NSCLC cells. CYTOR knockdown also enhanced NSCLC cell radiosensitivity in vivo. CYTOR was highly expressed in NSCLC, while silencing CYTOR potentiated NSCLC cell radiosensitivity by upregulating miR­206 and suppressing PTMA. The present study preliminarily revealed the role of CYTOR in radiotherapy sensitivity of NSCLC and provided a novel potential target for the clinical treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Citoesqueleto/fisiologia , Neoplasias Pulmonares/radioterapia , MicroRNAs/fisiologia , Precursores de Proteínas/fisiologia , RNA Longo não Codificante/fisiologia , Tolerância a Radiação , Timosina/análogos & derivados , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Prognóstico , Timosina/fisiologia
4.
Pharmacol Res ; 169: 105662, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000361

RESUMO

Nerve growth factor (NGF), by binding to TrkA and p75NTR receptors, regulates the survival and differentiation of sensory neurons during development and mediates pain transmission and perception during adulthood, by acting at different levels of the nervous system. Key to understanding the role of NGF as a pain mediator is the finding that mutations (namely, R121W, V232fs and R221W) in the NGF gene cause painlessness disease Hereditary Sensory and Autonomic Neuropathy type V (HSAN V). Here we shall review the consequences of these NGF mutations, each of which results in specific clinical signs: R221W determines congenital pain insensitivity with no overt cognitive disabilities, whereas V232fs and R121W also result in intellectual disability, thus showing similarities to HSAN IV, which is caused by mutations in TrkA, rather than to HSAN V. Comparing the cellular, biochemical and clinical findings of these mutations could help in better understanding not only the possible mechanisms underlying HSAN V, but also mechanisms of NGF signalling and roles. These mutations alter the balance between NGF and proNGF in favour of an accumulation of the latter, suggesting a possible role of proNGF as a molecule with an analgesic role. Furthermore, the neurotrophic and pronociceptive functions of NGF are split by the R221W mutation, making NGF variants based on this mutation interesting for designing therapeutic applications for many diseases. This review emphasizes the possibility of using the mutations involved in "painlessness" clinical disorders as an innovative approach to identify new proteins and pathways involved in pain transmission and perception. OUTSTANDING QUESTIONS: Why do homozygous HSAN V die postnatally? What is the cause of this early postnatal lethality? Is the development of a mouse or a human feeling less pain affecting higher cognitive and perceptual functions? What is the consequence of the HSAN V mutation on the development of joints and bones? Are the multiple fractures observed in HSAN V patients due exclusively to the carelessness consequent to not feeling pain, or also to an intrinsic frailty of their bones? Are heterodimers of NGFWT and NGFR221W in the heterozygote state formed? And if so, what are the properties of these heterodimeric proteins? How is the processing of proNGFR221W to NGFR221W affected by the mutation?


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Fator de Crescimento Neural/fisiologia , Percepção da Dor/fisiologia , Precursores de Proteínas/fisiologia , Animais , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Humanos , Mutação/genética , Fator de Crescimento Neural/genética , Precursores de Proteínas/genética
5.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032635

RESUMO

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.


Assuntos
COVID-19/etiologia , COVID-19/fisiopatologia , Haptoglobinas/fisiologia , Mucosa Intestinal/fisiopatologia , Precursores de Proteínas/fisiologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Adolescente , Antígenos Virais/sangue , Biomarcadores/sangue , COVID-19/virologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Haptoglobinas/antagonistas & inibidores , Humanos , Lactente , Recém-Nascido , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Masculino , Oligopeptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Estudo de Prova de Conceito , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/sangue , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Adulto Jovem
6.
Front Immunol ; 12: 642855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968032

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive disease harboring significant morbidity and mortality despite recent advances in therapy. Regardless of disease severity acute exacerbations (IPF-AEs) may occur leading to considerable loss of function and are the leading cause of death in IPF. Histologic features of IPF-AE are very similar to acute respiratory distress syndrome (ARDS), but the underlying mechanisms are incompletely understood. We investigated the role of the NLRP3 inflammasome in IPF and IPF-AE. Bronchoalveolar lavage (BAL) cells were sampled from patients with IPF (n = 32), IPF-AE (n = 10), ARDS (n = 7) and healthy volunteers (HV, n = 37) and the NLRP3-inflammasome was stimulated in-vitro. We found the NLRP3 inflammasome to be hyper-inducible in IPF compared to HV with increased IL-1ß and pro-IL-1ß levels on ELISA upon stimulation as well as increased caspase-1 activity measured by caspase-1p20 immunoblotting. In IPF-AE, IL-1ß was massively elevated to an extent similar to ARDS. To evaluate potential mechanisms, we co-cultured BAL cells with radiated A549 cells (a model to simulate apoptotic alveolar epithelial cells), which led to increased NLRP3 mRNA expression and increased caspase-1 dependent IL-1ß production. In the presence of a reactive oxygen species (ROS) inhibitor (diphenyleneiodonium) and a cathepsin B inhibitor (E64D), NLRP3 expression was suppressed indicating that induction of NLRP3 activation following efferocytosis of apoptotic A549 cells is mediated via ROS and cathepsin-B. In summary, we present evidence of involvement of the NLRP3 inflammasome-caspase pathway in the pathogenesis of IPF-AE, similarly to ARDS, which may be mediated by efferocytosis of apoptotic alveolar epithelial cells in IPF.


Assuntos
Apoptose , Caspase 1/fisiologia , Fibrose Pulmonar Idiopática/complicações , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Células A549 , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Catepsina B/fisiologia , Feminino , Humanos , Interleucina-1/fisiologia , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
7.
Pediatrics ; 147(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33795481

RESUMO

Arginine vasopressin (AVP)-mediated osmoregulatory disorders, such as diabetes insipidus (DI) and syndrome of inappropriate secretion of antidiuretic hormone (SIADH) are common in the differential diagnosis for children with hypo- and hypernatremia and require timely recognition and treatment. DI is caused by a failure to concentrate urine secondary to impaired production of or response to AVP, resulting in hypernatremia. Newer methods of diagnosing DI include measuring copeptin levels; copeptin is AVP's chaperone protein and serves as a surrogate biomarker of AVP secretion. Intraoperative copeptin levels may also help predict the risk for developing DI after neurosurgical procedures. Copeptin levels hold diagnostic promise in other pediatric conditions, too. Recently, expanded genotype and phenotype correlations in inherited DI disorders have been described and may better predict the clinical course in affected children and infants. Similarly, newer formulations of synthetic AVP may improve pediatric DI treatment. In contrast to DI, SIADH, characterized by inappropriate AVP secretion, commonly leads to severe hyponatremia. Contemporary methods aid clinicians in distinguishing SIADH from other hyponatremic conditions, particularly cerebral salt wasting. Further research on the efficacy of therapies for pediatric SIADH is needed, although some adult treatments hold promise for pediatrics. Lastly, expansion of home point-of-care sodium testing may transform management of SIADH and DI in children. In this article, we review recent developments in the understanding of pathophysiology, diagnostic workup, and treatment of better outcomes and quality of life for children with these challenging disorders.


Assuntos
Diabetes Insípido/diagnóstico , Diabetes Insípido/terapia , Síndrome de Secreção Inadequada de HAD/diagnóstico , Síndrome de Secreção Inadequada de HAD/terapia , Neurofisinas , Precursores de Proteínas , Vasopressinas , Criança , Diabetes Insípido/etiologia , Humanos , Síndrome de Secreção Inadequada de HAD/etiologia , Neurofisinas/fisiologia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia
8.
Int Urol Nephrol ; 53(10): 2081-2088, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33428167

RESUMO

The intestinal barrier is the first line of defense against foreign antigens. Tight junctions play an important role in maintaining the function of the intestinal wall. Zonulin is the only physiological protein discovered in recent years that can reversibly regulate tight junctions in human body. It changes the permeability of intestinal epithelial cells by regulating the state of tight junctions. Increased intestinal permeability can lead to abnormal activation of intestinal mucosal immune and bacterial translocation, then inducing systemic inflammation. It has already been reported that zonulin plays an important pathogenic role in a variety of diseases by regulating tight junctions leading to an abnormal increase of intestinal permeability. However, the research on the pathogenic role and mechanism of zonulin pathway in kidney disease is still in its infancy. Therefore, we reviewed the progress on pathophysiological characteristics of zonulin as well as the pathogenesis of zonulin in kidney disease in this paper.


Assuntos
Haptoglobinas/fisiologia , Nefropatias/etiologia , Precursores de Proteínas/fisiologia , Humanos
9.
Biochem Biophys Res Commun ; 534: 653-658, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33228964

RESUMO

Two novel peptides, neuromedin U precursor-related peptide (NURP) and neuromedin S precursor-related peptide (NSRP), are produced from neuromedin U (NMU) and neuromedin S (NMS) precursors, respectively, as these precursors have multiple consensus sequences for proteolytic processing. Our group has shown previously that one of these two novel peptides, NURP, stimulates body temperature and locomotor activity, but not food intake. However, the physiological function of the other peptide, NSRP, has remained unclear. Therefore, the aim of this study was to characterize differences in the regions of the rat brain targeted by the NMU/NMS peptide family, including NURP and NSRP, and their physiological functions. First, we explored the regions of c-Fos expression after intracerebroventricular (i.c.v.) injection of NURP and NSRP and found that these were fewer than after i.c.v. injection of NMU and NMS in the hypothalamus, possibly because NURP and NSRP cannot activate NMU/NMS receptors. In the ventral subiculum, which is one region of the hippocampus, c-Fos expression was evident only after i.c.v. injection of NURP. We also examined the effects of NSRP on food intake, body temperature and locomotor activity. Like NURP, NSRP increased both body temperature and locomotor activity, but not food intake, indicating that NSRP is also a functional peptide. However, these effects of NSRP were distinctly weaker than those of NURP. These findings suggest differences in the affinity of NURP and/or NSRP for specific receptors, or in their respective biological activities.


Assuntos
Sistema Nervoso Central/fisiologia , Neuropeptídeos/fisiologia , Precursores de Proteínas/fisiologia , Sequência de Aminoácidos , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Injeções Intraventriculares , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuropeptídeos/administração & dosagem , Neuropeptídeos/genética , Precursores de Proteínas/administração & dosagem , Precursores de Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores de Neurotransmissores/fisiologia , Homologia de Sequência de Aminoácidos
10.
Mol Biol Cell ; 31(23): 2597-2629, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877278

RESUMO

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells. [Media: see text].


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Precursores de Proteínas/metabolismo , Receptor de Insulina/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos , Células HEK293 , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Fosforilação , Precursores de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Receptor de Insulina/fisiologia , Transdução de Sinais , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo
11.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32792133

RESUMO

Most cases of acquired central diabetes insipidus are caused by destruction of the neurohypophysis by: 1) anatomic lesions that destroy the vasopressin neurons by pressure or infiltration, 2) damage to the vasopressin neurons by surgery or head trauma, and 3) autoimmune destruction of the vasopressin neurons. Because the vasopressin neurons are located in the hypothalamus, lesions confined to the sella turcica generally do not cause diabetes insipidus because the posterior pituitary is simply the site of the axon terminals that secrete vasopressin into the bloodstream. In addition, the capacity of the neurohypophysis to synthesize vasopressin is greatly in excess of the body's needs, and destruction of 80-90% of the hypothalamic vasopressin neurons is required to produce diabetes insipidus. As a result, even large lesions in the sellar and suprasellar area generally are not associated with impaired water homeostasis until they are surgically resected. Regardless of the etiology of central diabetes insipidus, deficient or absent vasopressin secretion causes impaired urine concentration with resultant polyuria. In most cases, secondary polydipsia is able to maintain water homeostasis at the expense of frequent thirst and drinking. However, destruction of the osmoreceptors in the anterior hypothalamus that regulate vasopressin neuronal activity causes a loss of thirst as well as vasopressin section, leading to severe chronic dehydration and hyperosmolality. Vasopressin deficiency also leads to down-regulation of the synthesis of aquaporin-2 water channels in the kidney collecting duct principal cells, causing a secondary nephrogenic diabetes insipidus. As a result, several days of vasopressin administration are required to achieve maximal urine concentration in patients with CDI. Consequently, the presentation of patients with central diabetes insipidus can vary greatly, depending on the size and location of the lesion, the magnitude of trauma to the neurohypophysis, the degree of destruction of the vasopressin neurons, and the presence of other hormonal deficits from damage to the anterior pituitary.


Assuntos
Diabetes Insípido Neurogênico/etiologia , Doenças da Hipófise/complicações , Neuro-Hipófise/patologia , Aquaporina 2/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/epidemiologia , Diabetes Insípido Neurogênico/terapia , Homeostase/fisiologia , Humanos , Neurofisinas/fisiologia , Doenças da Hipófise/diagnóstico , Doenças da Hipófise/epidemiologia , Doenças da Hipófise/terapia , Polidipsia/diagnóstico , Polidipsia/epidemiologia , Polidipsia/etiologia , Polidipsia/terapia , Poliúria/diagnóstico , Poliúria/epidemiologia , Poliúria/etiologia , Poliúria/terapia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
12.
J Photochem Photobiol B ; 211: 111993, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32818912

RESUMO

The present study investigates the involvement of circadian rhythm in photoperiodic expressions of GnRH-I and GnIH in the hypothalamus controlling seasonal reproduction in the Eurasian tree sparrow (Passer montanus). Groups of photosensitive birds were exposed for four weeks to resonance light dark cycles comprising of a light phase of 6 h (L) combined with dark phase of different durations (D) such that the period of LD cycles varied by 12 h increments viz. 12- (6 L/6D), 24- (6 L/18D), 36- (6 L/30D), 48- (6 L/42D), 60- (6 L/54D) and 72- (6 L/66D)h. In addition, a control group (C) was maintained under long day length (14 L/10D). Observations, recorded at the beginning and end of experiment, revealed significant testicular growth with corresponding increase in the hypothalamic expression of GnRH-I peptide but low levels of GnIH mRNA and peptide in the birds exposed to resonance cycles of 12, 36 and 60 h which were read as long days. On the other hand, birds experiencing resonance cycles of 24, 48 and 72 h read them as short days wherein they maintained their quiescent gonads and low levels of GnRH-I peptide but exhibited significant increase in GnIH mRNA and peptide expressions. Thus, sparrows responded to resonance light dark cycles differently despite the fact that each of them contained only 6 h of light. These findings suggest that an endogenous circadian rhythm is involved in photoperiodic expressions of above molecules and indicate a shift in their expressions depending upon whether the light falls in the photoinducible or non-photoinducible phase of an endogenous circadian rhythm.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/genética , Hormônios Hipotalâmicos/genética , Precursores de Proteínas/genética , Animais , Hormônio Liberador de Gonadotropina/fisiologia , Hormônios Hipotalâmicos/fisiologia , Masculino , Fotoperíodo , Precursores de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Reprodução , Estações do Ano , Pardais , Fatores de Tempo
13.
Expert Opin Biol Ther ; 20(12): 1461-1475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32700610

RESUMO

INTRODUCTION: A large volume of data indicates that the known thymic hormones, thymulin, thymopoietin, thymosin-α, thymosin-ß, and thymic humoral factor-y2, exhibit different spectra of activities. Although large in volume, available data are rather fragmented, resulting in a lack of understanding of the role played by thymic hormones in immune homeostasis. AREA COVERED: Existing data compartmentalizes the effect of thymic peptides into 2 categories: influence on immune cells and interconnection with neuroendocrine systems. The current study draws attention to a third aspect of the thymic peptide effect that has not been clarified yet, wherein ubiquitous and highly abundant intranuclear precursors of so called 'thymic peptides' play a fundamental role in all somatic cells. EXPERT OPINION: Our analysis indicated that, under certain stress-related conditions, these precursors are cleaved to form immunologically active peptides that rapidly leave the nucleus and intracellular spaces, to send 'distress signals' to the immune system, thereby acting as stress sensors. We propose that these peptides may form a link between somatic cells and immune as well as neuroendocrine systems. This model may provide a better understanding of the mechanisms underlying immune homeostasis, leading thereby to the development of new therapeutic regimes utilizing the characteristics of thymic peptides.


Assuntos
Fragmentos de Peptídeos/fisiologia , Precursores de Proteínas/fisiologia , Estresse Fisiológico/imunologia , Timo/metabolismo , Hormônios do Timo/fisiologia , Animais , Homeostase/imunologia , Humanos , Neuroimunomodulação/fisiologia , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/fisiologia , Precursores de Proteínas/metabolismo , Hormônios do Timo/metabolismo
14.
Eur J Endocrinol ; 183(2): R29-R40, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32580146

RESUMO

For an endocrinologist, nephrogenic diabetes insipidus (NDI) is an end-organ disease, that is the antidiuretic hormone, arginine-vasopressin (AVP) is normally produced but not recognized by the kidney with an inability to concentrate urine despite elevated plasma concentrations of AVP. Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. For a geneticist, hereditary NDI is a rare disease with a prevalence of five per million males secondary to loss of function of the vasopressin V2 receptor, an X-linked gene, or loss of function of the water channel AQP2. These are small genes, easily sequenced, with a number of both recurrent and private mutations described as disease causing. Other inherited disorders with mild, moderate or severe inability to concentrate urine include Bartter's syndrome and cystinosis. MAGED2 mutations are responsible for a transient form of Bartter's syndrome with severe polyhydramnios. The purpose of this review is to describe classical phenotype findings that will help physicians to identify early, before dehydration episodes with hypernatremia, patients with familial NDI. A number of patients are still diagnosed late with repeated dehydration episodes and large dilations of the urinary tract leading to a flow obstructive nephropathy with progressive deterioration of glomerular function. Families with ancestral X-linked AVPR2 mutations could be reconstructed and all female heterozygote patients identified with subsequent perinatal genetic testing to recognize affected males within 2 weeks of birth. Prevention of dehydration episodes is of critical importance in early life and beyond and decreasing solute intake will diminish total urine output.


Assuntos
Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Desidratação/prevenção & controle , Diabetes Insípido Nefrogênico/terapia , Feminino , Triagem de Portadores Genéticos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Testes Genéticos , Humanos , Hipernatremia , Recém-Nascido , Glomérulos Renais/fisiopatologia , Masculino , Mutação , Neurofisinas/sangue , Neurofisinas/fisiologia , Concentração Osmolar , Gravidez , Diagnóstico Pré-Natal , Precursores de Proteínas/sangue , Precursores de Proteínas/fisiologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/fisiologia , Vasopressinas/sangue , Vasopressinas/fisiologia
15.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101398, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32387127

RESUMO

The two main differential diagnoses of central diabetes insipidus are nephrogenic diabetes insipidus and primary polydipsia. Reliable distinction between those entities is essential as treatment differs substantially with the wrong treatment potentially leading to serious complications. Past diagnostic measures using the indirect water deprivation test had several pitfalls, resulting in a low diagnostic accuracy. With the introduction of copeptin, a stable and reliable surrogate marker for arginine vasopressin, diagnosis of diabetes insipidus was new evaluated. While unstimulated basal copeptin measurement reliably diagnoses nephrogenic diabetes insipidus, a stimulation test is needed to differentiate patients with central diabetes insipidus from patients with primary polydipsia. Stimulation can either be achieved through hypertonic saline infusion or arginine infusion. While the former showed high diagnostic accuracy and superiority over the indirect water deprivation test in a recent validation study, the diagnostic accuracy for arginine-stimulated copeptin was slightly lower, but superior in test tolerance. In summary of the recent findings, a new copeptin based diagnostic algorithm is proposed for the reliable diagnosis of diabetes insipidus.


Assuntos
Diabetes Insípido/diagnóstico , Técnicas de Diagnóstico Endócrino , Biomarcadores/análise , Biomarcadores/sangue , Diabetes Insípido/sangue , Diabetes Insípido/etiologia , Diabetes Insípido Nefrogênico/sangue , Diabetes Insípido Nefrogênico/diagnóstico , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Neurogênico/sangue , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/etiologia , Diagnóstico Diferencial , Técnicas de Diagnóstico Endócrino/tendências , Humanos , Neurofisinas/sangue , Neurofisinas/fisiologia , Poliúria/sangue , Poliúria/diagnóstico , Poliúria/etiologia , Precursores de Proteínas/sangue , Precursores de Proteínas/fisiologia , Vasopressinas/sangue , Vasopressinas/fisiologia
16.
J Orthop Surg Res ; 15(1): 162, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334633

RESUMO

BACKGROUND: This article reports the effects of proenkephalin (PENK) on osteosarcoma (OS) cell migration. METHODS: A Gene Expression Omnibus (GEO) dataset was used to identify differentially expressed genes (DEGs) in OS tumor samples and normal human osteoblasts. Tumor tissue and adjacent normal tissue were collected from 40 OS patients. MG63 cells were transfected with si-PENK. Transwell migration assays and wound healing assays were performed to compare the effect of PENK on migration. Moreover, LY294002 was used to identify the potential mechanism. Gene expression was examined via qRT-PCR and Western blotting. RESULTS: Bioinformatic analysis revealed that PENK was downregulated in OS tumor samples compared with normal human osteoblasts. Moreover, PENK was identified as the hub gene of the DEGs. The PI3K/Akt signaling pathway was significantly enriched in the DEGs. Moreover, PENK was downregulated in OS and MG63 cells compared with the corresponding control cells. Silencing PENK promoted MG63 cell migration; however, treatment with LY294002 partially attenuated PENK silencing-induced OS cell migration. CONCLUSION: PENK inhibits OS cell migration by activating the PI3K/Akt signaling pathway.


Assuntos
Neoplasias Ósseas/metabolismo , Movimento Celular , Encefalinas/fisiologia , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Precursores de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Adulto , Western Blotting , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Encefalinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Osteoblastos/metabolismo , Osteossarcoma/patologia , Precursores de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
17.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101384, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32205050

RESUMO

In the pregnant patient, hypotonic polyuria in the setting of elevated serum osmolality and polydipsia should narrow the differential to causes related to diabetes insipidus (DI). Gestational DI, also called transient DI of pregnancy, is a distinct entity, unique from central DI or nephrogenic DI which may both become exacerbated during pregnancy. These three different processes relate to vasopressin, where increased metabolism, decreased production or altered renal sensitivity to this neuropeptide should be considered. Gestational DI involves progressively rising levels of placental vasopressinase throughout pregnancy, resulting in decreased endogenous vasopressin and resulting hypotonic polyuria worsening through the pregnancy. Gestational DI should be distinguished from central and nephrogenic DI that may be seen during pregnancy through use of clinical history, urine and serum osmolality measurements, response to desmopressin and potentially, the newer, emerging copeptin measurement. This review focuses on a brief overview of osmoregulatory and vasopressin physiology in pregnancy and how this relates to the clinical presentation, pathophysiology, diagnosis and management of gestational DI, with comparisons to the other forms of DI during pregnancy. Differentiating the subtypes of DI during pregnancy is critical in order to provide optimal management of DI in pregnancy and avoid dehydration and hypernatremia in this vulnerable population.


Assuntos
Diabetes Insípido/diagnóstico , Diabetes Insípido/terapia , Desidratação/complicações , Desidratação/diagnóstico , Desidratação/fisiopatologia , Desidratação/prevenção & controle , Diabetes Insípido/etiologia , Diabetes Insípido Nefrogênico/diagnóstico , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Nefrogênico/terapia , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/terapia , Diagnóstico Diferencial , Feminino , Humanos , Hipernatremia/diagnóstico , Hipernatremia/etiologia , Hipernatremia/terapia , Neurofisinas/fisiologia , Neurofisinas/uso terapêutico , Osmorregulação/fisiologia , Polidipsia/sangue , Polidipsia/diagnóstico , Polidipsia/terapia , Poliúria/sangue , Poliúria/diagnóstico , Poliúria/terapia , Gravidez , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/etiologia , Complicações na Gravidez/terapia , Precursores de Proteínas/fisiologia , Precursores de Proteínas/uso terapêutico , Vasopressinas/fisiologia , Vasopressinas/uso terapêutico , Equilíbrio Hidroeletrolítico/fisiologia
18.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101385, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32169331

RESUMO

The treatment of central diabetes insipidus has not changed significantly in recent decades, and dDAVP and replacement of free water deficit remain the cornerstones of treatment. Oral dDAVP has replaced nasal dDAVP as a more reliable mode of treatment for chronic central diabetes insipidus. Hyponatraemia is a common side effect, occurring in one in four patients, and should be avoided by allowing a regular break from dDAVP to allow a resultant aquaresis. Hypernatraemia is less common, and typically occurs during hospitalization, when access to water is restricted, and in cases of adipsic DI. Management of adipsic DI can be challenging, and requires initial inpatient assessment to establish dose of dDAVP, daily fluid prescription, and eunatraemic weight which can guide day-to-day fluid targets in the long-term.


Assuntos
Diabetes Insípido Neurogênico/terapia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Desamino Arginina Vasopressina/uso terapêutico , Diabetes Insípido/tratamento farmacológico , Diabetes Insípido/terapia , Diabetes Insípido Neurogênico/tratamento farmacológico , Humanos , Hipernatremia/etiologia , Hipernatremia/terapia , Hiponatremia/tratamento farmacológico , Hiponatremia/etiologia , Neurofisinas/fisiologia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia
19.
Curr Med Chem ; 27(29): 4840-4854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31389310

RESUMO

Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as "alarmins". Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.


Assuntos
Anticorpos , Precursores de Proteínas , Timosina/análogos & derivados , Alarminas , Animais , Humanos , Precursores de Proteínas/imunologia , Precursores de Proteínas/fisiologia , Timosina/imunologia , Timosina/fisiologia
20.
FASEB J ; 33(11): 13051-13061, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31589480

RESUMO

Polycystic kidney disease (PKD) is characterized by the expansion of fluid-filled cysts in the kidney, which impair the function of kidney and eventually leads to end-stage renal failure. It has been previously demonstrated that transgenic overexpression of prothymosin α (ProT) induces the development of PKD; however, the underlying mechanisms remain unclear. In this study, we used a mouse PKD model that sustains kidney-specific low-expression of Pkd1 to illustrate that aberrant up-regulation of ProT occurs in cyst-lining epithelial cells, and we further developed an in vitro cystogenesis model to demonstrate that the suppression of ProT is sufficient to reduce cyst formation. Next, we found that the expression of ProT was accompanied with prominent augmentation of protein acetylation in PKD, which results in the activation of downstream signal transducer and activator of transcription (STAT) 3. The pathologic role of STAT3 in PKD has been previously reported. We determined that this molecular mechanism of protein acetylation is involved with the interaction between ProT and STAT3; consequently, it causes the deprivation of histone deacetylase 3 from the indicated protein. Conclusively, these results elucidate the significant role of ProT, including protein acetylation and STAT3 activation in PKD, which represent potential for ameliorating the disease progression of PKD.-Chen, Y.-C., Su, Y.-C., Shieh, G.-S., Su, B.-H., Su, W.-C., Huang, P.-H., Jiang, S.-T., Shiau, A.-L., Wu, C.-L. Prothymosin α promotes STAT3 acetylation to induce cystogenesis in Pkd1-deficient mice.


Assuntos
Doenças Renais Policísticas/patologia , Precursores de Proteínas/fisiologia , Fator de Transcrição STAT3/metabolismo , Canais de Cátion TRPP/genética , Timosina/análogos & derivados , Acetilação , Animais , Progressão da Doença , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/metabolismo , Precursores de Proteínas/genética , Timosina/genética , Timosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...